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Abstract

Measurements of borehole temperatures obtained from a continuously moving ther­ 
mistor probe are a convolution of the actual borehole temperatures with the finite thermal 
response function of the temperature measurement system. To estimate actual tempera­ 
tures from the measurements requires deconvolution, an operation that can magnify noise. 
We discuss the use of optimal (Wiener) filtering for noise reduction, followed by an exact 
deconvolution using serial division. We test the method using synthetic data and then 
apply it to measurements made in May 1992 at the GISP2 icecore hole in Greenland. 
After optimal filtering of the 1992 GISP2 measurements, the data power spectrum falls to 
10% of maximum as frequencies drop below 0.004 Hz (periods of 250 seconds, equivalent 
to about 20 m in depth at a logging velocity of about 7.4 cm/s). The noise at higher 
frequencies (shorter wavelengths) is probably a result of noise caused by the mechanical 
slip-ring that provides electrical connection to the thermister cable.
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1 INTRODUCTION

Temperatures measured in boreholes contain a record of the temperature change history 
at the Earth's surface (Thomson, 1862; Birch, 1948; Lachenbruch and Marshall, 1986). 
Because of the smoothing effects of heat conduction and convection processes, this climate 
record loses fidelity with increasing depth. One way to compensate for this inevitable loss 
of resolution with depth, is to collect the most accurate borehole temperature record 
possible. Backus-Gilbert analysis of the borehole temperature inverse problem (Clow, 
1992), indicates that recovery of climate history is optimized by increasing measurement 
resolution to 1 mK (0.001°C). Also, 1 mK accuracy allows for better detection of climate- 
related transient temperature changes in repeat borehole logging (Lachenbruch, 1994). 
To achieve this measurement accuracy, an experimental borehole logging system has been 
developed (Clow and others, 1995) and used to collect data in the GISP2 climate research 
hole drilled into the Greenland icecap (Boulton, 1993; Morrison, 1993). The data were 
collected in a continuous logging mode as the thermistor probe descended at about 7.6 
cm/s into the icecore hole. The corehole is filled with liquid n-butyl acetate to prevent 
collapse of the hole. This paper documents our processing of these data to remove the 
random ±1.5 mK mechanically produced "slip-ring" noise from the measurements and 
our scheme for deconvolution to remove the effects of the finite (approx. 15-sec time 
constant) time response of the temperature measurement system.

2 TEMPERATURE MEASUREMENT

The measurement of temperatures in boreholes has evolved in several phases (e.g., Jessop, 
1990, p. 23). The earliest measurements were made by lowering glass thermometers with 
long time constants to depth, allowing them to equilibrate, and then quickly withdrawing 
them and recording the temperature reading. Modern borehole temperature measure­ 
ment generally involves monitoring the resistance of an electrical thermistor probe that 
is lowered into a borehole (Beck and Balling, 1988). Two modes of operation are in use: 
start/stop and continuous logging. In the start/stop mode the probe is stationary for 
each temperature measurement; the probe is allowed to reach sufficient thermal equi­ 
librium to meet the measurement accuracy required by the study. Reported times for 
a single start/stop measurement range from more than 10 minutes (Costain, 1970) to 
times as short as 30 s (Chisholm and Chapman, 1992). In the continuous mode (Costain, 
1970; Conaway, 1977; Conaway and Beck, 1977), the resistance of the thermistor probe is 
recorded at discrete intervals (either of time or distance, depending on the system used) 
as the probe is lowered continuously into the borehole.

If the response time of the probe is small relative to the discrete measurement interval 
then temperatures measured in the continuous mode will be a good representation of the 
temperature at each measurement point. If, however, the probe time constant is on the 
order of the measurement interval or more, then the measured temperatures will be a 
smoothed version of the actual temperature distribution. For some studies, such as the 
determination of average thermal gradients for calculation of heat flow, this smoothing 
does not present a problem. For other work, such as detailed formation conductivity 
estimation or inversion for near-surface temperature variation, the smoothed record is a
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disadvantage.

2.1 Response time of thermistor probe

The response of a thermistor probe system to a step change in temperature, AT, has been 
modeled by (Costain, 1970; Nielsen and Balling, 1984)

) (1)

where TOO is the new equilibrium temperature, r is the time constant of the system, t0 is 
the time delay before the system begins to sense the temperature change, and t is time. 
If equation 1 is rewritten as

) (2)

then r and t0 can be determined as the slope (r) and intercept (t0 ) of a linear regression 
of time verses the function ln[(s(tf)   TOO)/ AT].

The time constant and time delay will depend on the thermal properties and design of 
the probe system as well as the thermal properties and temperature of the fluid in contact 
with the probe. Time constants reported in the literature range from 7 seconds (Chisholm 
and Chapman, 1992) to 15 seconds (Costain, 1970; Conaway, 1977) for thermistor bead 
probes and up to 18.7 seconds (Nielson and Balling, 1984) for a quartz oscillator ther­ 
mometer. Chisholm and Chapman (1992) report a 7 s time constant for a logging system 
based on the same probe (Fenwal 212E) as used in our system. A recent study (Sawyer 
and others, 1994) of data collected on the Ocean Drilling Program suggests a probe time 
constant of more than 500 s (however, no physical explanation was found for this empirical 
result). Reported time delays range from negligible (Sass and others, 1971) to 0.2 sec­ 
onds (Conaway, 1977) for thermistor bead probe systems and up to 3.8 seconds (Nielson 
and Balling, 1984) for a quartz oscillator thermometer system. Sawyer and others (1994) 
interpreted a time delay of 125 s for their probe system. Our measurements (appendix 
A) show a range of time constants for our Fenwal 212E thermistor bead probe system 
(Table 1). We have not experienced any noticeable time delay with our logging system. 
Measuring the probe system response in the same physical conditions as encountered in 
the borehole is important.

Because the measurement system has a finite time constant, any measured temper­ 
ature is an averaged value based on the temperatures encountered by the probe during 
the last several time constants; temperatures measured by a probe in continuous motion 
down a borehole are a smoothed version of the actual temperature variation.

In addition to the physical response of the temperature probe system, the accuracy 
of time and depth information for each measurement are important to reconstruction of 
the actual temperatures. As discussed in the next section, temperature measurements 
at regular time intervals are required for decon volution of the probe response. If the 
logging system does not take measurements at regular time intervals then some form of 
interpolation will be required to estimate temperatures at regular time intervals. This 
interpolation would contribute to uncertainty in the recovered values.
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Table 1: Temperature probe time constants

probe
Fenwal 212E
Fenwal 212E
Fenwal 212E
Fenwal 212E
Fenwal 212E
Fenwal 212E
Fenwal 212E

thermistor
qtz oscillator
ODP probe

fluid
alcohol
alcohol
water
water
DFA
Jet-A
n-butyl
acetate
water
water
water

/ (°f° 1 1 ^>
13
13
7
0
7
13
-31

7
?
?

\ T(B)
2.7
3.8
7
7.2
10
14.7
15.0

15
18.7
500

comments
stirred
still
still
still, ice bath
Alaska field test
still
GISP2 field test

no physical basis

ref
Appendix A
Appendix A
Chisholm and Chapman, 1992
Appendix A
Clow, pers. comm.
Appendix A
Appendix A

Costain, 1970
Nielson and Balling, 1984
Sawyer and others, 1994

3 TEMPERATURE DECONVOLUTION

Several workers have discussed the problem of deconvolution of measurement system 
response from borehole temperatures measured with a moving probe (Costain, 1970; 
Conaway, 1977; Nielsen and Balling, 1984; Sawyer and others, 1994). The initial studies 
(Costain, 1970; Conaway, 1977) focussed on developing a combined gradient, deconvolu­ 
tion, and smoothing operator for determination of temperature gradients from continu­ 
ously measured profiles. The combined operator approach is efficient for quick processing, 
but doesn't allow separate noise analysis. Nielsen and Balling (1984) use a Backus-Gilbert 
approach to study the trade-off between resolution and accuracy in deconvolution. Their 
method involves selection of an a priori averaging function and determination of a set 
of smoothing coefficients (one for each data point). In recent communication, Nielsen 
(written communication, 1993) suggests breaking the problem into separate smoothing 
and deconvolution steps; that is the approach we take here.

3.1 Theory

The finite time response of the thermistor probe system has the effect of smoothing 
measured temperatures. The word "convolution" describes this smoothing; it is defined as 
(Bracewell, 1986, p. 24) "the action of an observing instrument when it takes a weighted 
mean of some physical quantity over a narrow range of some variable." The following 
mathematical formulation for the measurement process contains the assumption that we 
know the mathematical form of the impulse response of our temperature probe system 
and that it is independent of temperature (i.e., that we have a linear system). The form of 
the probe impulse response to a step change in temperature (equation 1) and the related 
form for an impulse response (equation 3) have been assumed by previous workers (i.e., 
Costain, 1970; Conaway, 1977; Nielsen and Balling, 1984). Our limited experience with 
measurement of the probe time constant (see Appendix A) suggests that this form is good
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for the first part of the temperature response, but breaks down at longer times after the 
temperature step or impulse. We plan to investigate this further.

If we assume the smoothing response for a temperature impulse is given by (Nielson 
and Balling, 1984)

t-),t>t0 (3)

0 J t<t0 (4)

then, for a general temperature function, d(i), the smoothing can be expressed as the 
convolution (Nielson and Balling, 1984):

/oo 
d(n)h(t - //)d// (5) 

-oo

The problem is to deconvolve the measured temperature function, ra(tf), to obtain the 
data, d(t).

The convolution of the probe system response with actual temperature is a continuous 
process, but our measurements are made at discrete intervals in the presence of noise. If 
we had noise-free, continuous measurements we could use Fourier transform theory for de- 
convolution; it becomes a division in the Fourier domain (Bracewell, 1986). Because of the 
discrete time spacing of our measurements, however, we have an incomplete record. Any 
attempt to recover the actual temperature distribution is limited to the frequencies avail­ 
able in our discrete measurements. The presence of noise in our measurements causes our 
incomplete record to also be inaccurate. The process of decon volution, an un-smoothing, 
will amplify noise. The treatment of this noise is a key problem in deconvolution of our 
measurements.

3.2 Noise removal

Since deconvolution amplifies noise, we must try to remove noise from our measured 
signal before attempting to deconvolve. Noise in borehole temperature measurements 
may result from electical and mechanical effects such as ground current loops, thermal 
electromagnetic forces, triboelectic effects, space charge effects, interconductor leakage, 
digital resolution, irregular electrical contact in the slip-ring assembly, or other mechanical 
inaccuracies. Noise may also result from random physical processes such as convection 
within the fluid of the borehole. The noise spectrum of any given temperature log may 
then be a function of both the instrumental setup and the physical conditions in the 
borehole. Thus, noise should be analyzed separately for each instrument and borehole.

In the absence of independent knowledge of the noise sources, it is often possible to 
construct a noise model by examination of the power spectrum of the measured data 
(Press and others, 1992; section 13.3). An optimal (Wiener) filter for noise removal in the 
frequency domain can be defined as (Press and others, 1992):

\S(f)\ 2

where S and N are the Fourier transforms of the modeled signal and noise components 
of the data respectively; / is frequency. This function is equal to unity when the signal
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dominates the noise and will go to zero as the power of the noise increases. In practice 
(Press and others, 1992), the function may be approximated as the difference between 
smooth curves drawn through the calculated power spectrum of the measurements and 
an assumed model for the noise spectrum. Once this optimal filter is defined, noise 
can be removed from the measured signal by multiplication of the Fourier transform of 
the measured data with the optimal filter; this product is then inverse transformed to 
produce an approximation of the noise-free signal. The optimal filter defined here is a 
low-pass filter for which the frequency cutoff depends upon $. In a later section we 
discuss two examples of this procedure, one applied to synthetic data, the second applied 
to temperatures measured in the GISP2 icecore hole in Greenland.

3.3 Discrete deconvolution by division

Convolution of two finite, discretely sampled functions can be represented as a serial 
product (Bracewell, 1986, p. 30). If discrete samples of the data function, dt-, and the 
response function, /it-, are given, then the discrete approximation of the convolution to 
form the measured function, mt-, is:

where n is the number of terms in the response function, h. Note that this formulation 
requires knowledge of the data function, d, for times before the start of the experiment. 
One solution to this problem is to start with the system a steady-state such that di = d\ 
for i < 1. To invert this discrete convolution we may employ serial division (Bracewell, 
1986, p. 35). To reconstruct the data function given the measurements and a discrete 
response function, we can use the following summation:

  > 2 8
i

Note that each recovered data value, rft-, depends on the previous n   I recovered values. 
To recover the first n   I data values, we must make an assumption about the initial 
state of our measurement system; we must assume values of the measurement function 
before the start of our experiment. To address this problem, we have chosen to allow 
the thermister probe to reach thermal equilibrium before moving the probe down the 
borehole. In that case, mt- = mi for i < 0 and d\ = m\. A computer subroutine (in 
FORTRAN 77) that implements this method is given in Appendix B. This technique is 
advantageous over the standard FFT deconvolution technique because of its simplicity 
(it can be easily coded into a calculator or field computer) and because the beginning 
equilibrium condition is handled exactly.

3.4 Implications of discrete interval for deconvolution

Our purpose in attempting deconvolution is to undo the continuous convolution of tem­ 
perature with probe response that is performed by the physical thermistor system. Even 
assuming that all noise could be removed from the measured signal, the use of a discrete
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deconvolution will always yield an imperfect recovery of the original signal. Depending on 
the frequency content of the signal, it may be necessary to interpolate values between the 
smoothed measurements so that we may use a better representation of the response func­ 
tion. For the synthetic data example discussed below, we determined empirically that 
an interpolation of 9 points between each measured point allows recovery, even in the 
presence of noise, of the original signal within a standard error acceptable for our system. 
For the GISP2 data, noise dominates to lower frequencies in the power spectrum of the 
data and no interpolation was necessary. Additional work should be done to determine a 
general relation between the frequency contents of the signal and noise, increased discrete 
deconvolution resolution, and errors introduced by excessive interpolation.

3.5 Smoothing of deconvolved signal

Since it is impossible to remove all noise from the measured signal before deconvolution, 
some noise amplification will result from deconvolution. A second application of optimal 
filtering can be used to clean up the deconvolved signal. In both of the examples discussed 
below, the noise present in the deconvolved signal is of much lower magnitude than the 
noise removed before deconvolution.

3.6 Expected downhole variation of signal frequency content

As mentioned in the introduction, the surface temperature record stored in the conduc­ 
tive borehole temperature profile is increasingly damped with depth. Thus, in the absense 
of other variations, we expect the shorter wavelengths in our temperature log to be in­ 
creasingly damped with depth. In the analysis presented in this report we have analyzed 
the frequency content of the entire data log in one section, averaging any variation in fre­ 
quency content with depth. In the case of the 1992 GISP2 data, this approach is probably 
justified because we don't expect any variation in the inferred noise source with depth.

4 EXAMPLES

4.1 Synthetic example

To test the accuracy of the noise reduction and deconvolution procedures we constructed 
a synthetic borehole temperature data set, convolved it with a reasonable probe response 
function and added random noise. We then performed optimal noise filtering and decon­ 
volution and compared the recovered signal to the original synthetic signal. The results 
indicate that signal can be recovered to within 50% of the standard deviation of the 
added noise. In this example, the added noise had a standard deviation of 1 mK and the 
standard deviation between the synthetic signal and the deconvolved signal is less than 
0.5 mK.

The synthetic borehole temperatures were constructed by forward calculation from 
an assumed air temperature history. The synthetic data were constructed with a sample 
interval of 3.7 mm in depth. The long-term surface temperature intercept was set at -12°C 
and the background geothermal gradient was set to 20°C/km. The resulting function has 
a smooth temperature variation with depth (Figure 1).
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Figure 1: Synthetic data and numeric convolution with 15 s response function. Convolu­ 
tion with the finite thermistor probe response function produces a curve that is shifted 
down the borehole and smoothed.
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Detail of synthetic data & noisy convolution
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Figure 2: Detail plot of synthetic data (upper curve) and convolved data (lower curve) 
with 1 mK random noise added. The depth of the minimum temperature is shifted down 
the borehole by about 2 m.

An exponential probe response function was constructed using the computer code 
response.f (given in Appendix B) with t0 = 0, r = 15 s, a time interval of 0.05 s, and a 
time cutoif of 100 s. This probe response function was convolved with the synthetic data 
using the serial multiplication computer code convol.f (see Appendix B). The resulting 
signal shows the effect of the probe response (Figure 1).

To simulate data collected at 2 s intervals by a probe moving at 7.6 cm/s (15 ft/minute), 
the convolved signal was then sampled at a 15 cm interval (every 40th data point). Ran­ 
dom (white) noise with a standard deviation of 1 mK was added to this sampled signal. 
The resultant synthetic measurement (Figure 2) is representative of our expected data 
quality with the current measurement system (Clow and others, 1995).

The power spectrum for the noisy convolved signal (Figure 3) shows that the data 
signal departs significantly from the noise only for frequencies less than about 0.02 Hz (50 
second period, or 3.75 m at 7.6 cm/s). We use an exponential function to estimate the 
smooth signal plus noise function (Figure 3). The parameters for the exponential signal 
plus noise function were selected (by hand) to produce a conservative signal estimate 
(i.e., the model curve is systematically lower in squared amplitude than the calculated 
power spectrum). We modeled the noise with a constant squared amplitude of 10~ 10
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Power spectrum and optimal filter definition: before deconvolution

noise 
signal 
signal + noise

0.00 0.02 0.04 0.06 
Frequency (Hz)

0.08 0.10

Figure 3: Power spectrum of the noisy convolution function based on the synthetic data 
set. The 1 mK white noise spectrum is fit by a horizontal line at 10~ 10 squared amplitude. 
The noise plus signal function is fit by an exponential function of the form d(f) = a -f 
6exp( c/) where a =  10.0, 6 = +9.0, and c = 150. The modeled signal function is the 
difference of the two modeled functions.

for all frequencies. The difference between the modeled signal plus noise and and the 
modeled constant noise formed the estimate of the signal power spectrum for the optimal 
smoothing of the noisy convolved signal.

Table 2: Optimal filter functions - signal plus noise

data 
set
synthetic 
1992 GISP2

Fitting function: d(f) = a + 6exp(  c/) 
before deconvolution after deconvolution 
a be a b c
-10 9 150 -10 
-10.9 10 1400 -12

7 50 
4 250

The smoothed result was then augmented by 9 points interpolated between each data 
point. This interpolated function was deconvolved with a discrete probe response function 
with an 0.2 s interval. The power spectrum of this deconvolution (Figure 4) shows that the
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5 Power spectrum and optimal filter definition: after deconvolution

noise 
signal 
signal + noise

o.oo 0.02 0.04 0.06 
Frequency (Hz)

0.08 0.10

Figure 4: Power spectrum of the deconvolved signal based on the synthetic data set 
example. The white noise spectrum is fit by a horizontal line at 10~10 squared amplitude. 
The noise plus signal function is fit by an exponential function of the form d(f) = a + 
6exp( c/) where a =  10.0, b = +7.0, and c = 50. The modeled signal function is the 
difference of the two modeled functions.

signal has been stretched to higher frequencies (i.e., the deconvolved signal has meaningful 
information to at least 0.04 Hz verses 0.02 Hz for the original data). Again a conservative 
exponential estimate was made of the signal function. A flat white noise function with a 
squared amplitude of 10~10 was again subtracted from the modeled signal plus noise to 
define the signal function. This optimal filter was then applied to smooth the deconvolved 
data.

The biggest potential problems in reconstruction of our synthetic data set are expected 
where the temperature gradients are largest. Between the depths of 14 and 18 meters 
(Figure 5) the synthetic data has a large variation in gradient. The recovered values 
agree closely with the original data.

Examination of difference histograms gives an idea of the accuracy of our analysis 
(Figure 6). The difference between the convolved data and the noisy convolved data has 
a standard deviation of 1 mK, by design (dotted line, Figure 6). After optimal smoothing, 
that difference falls to about 0.3 mK (dashed line, Figure 6). The difference between our 
final, smoothed deconvolution and the original data function has a standard deviation of
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Detailed comparison of synthetic data, convolution, deconvolution
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Figure 5: Detailed comparison of the synthetic data set, noisy convolution, optimally 
smoothed convolution, and smoothed deconvolution for the maximum curvature portion 
of the data set.
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Error histograms - synthetic test case
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Figure 6: Histograms of differences between test data functions. Dotted line = histogram 
of 1 mK white noise added to convolved data function (difference between convolution and 
noisy convolution). Dashed line = histogram of convolution noise after optimal smoothing 
(difference between convolution and optimally smoothed noisy convolution). Solid line = 
histogram of total deconvolution error (difference between original synthetic data function 
and optimally smoothed deconvolution of smoothed noisy convolution).

less than 0.5 mK (solid line, Figure 6).

4.2 Deconvolution of measured temperatures in GISP2 borehole

On 12 May 1992, before drilling operations began for the 1992 season, we obtained a 
temperature log in the GISP2 borehole in Greenland (Figure 7; Clow and others, 1995). 
This section discusses the preliminary noise filtering and deconvolution procedures applied 
to that data set. A three step procedure was used: 1. removal of noise by optimal filtering, 
2. deconvolution with an assumed probe response function, 3. optimal filtering for removal 
of deconvolution noise.

Examination of the power spectrum of the measured temperatures (Figure 8), shows 
that the flat, white-noise spectrum of the random slip-ring noise completely dominates 
to a frequency of about 0.004 Hz. The spectrum is significantly affected by noise to at 
least 0.0025 Hz. We chose a conservative exponential fit function (Figure 8); it severely 
damps the optimal filter for frequencies greater than 0.003 Hz (Figure 9). The difference
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Figure 7: Measured GISP2 icecore hole temperature log of 12 May 1992.
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n Data power spectrum and optimal filter definition
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May 1992 GISP2 temperature log
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signal + noise -------
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Frequency (Hz)
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Figure 8: Power spectrum of GISP2 temperature log. The inferred white noise of the 
depth measurement system (so-called "slip-ring" noise) is modeled with a flat function at 
j.Q-io.9 squared amplitude. The noise plus signal function is fit by an exponential function 
of the form d(f) = a + bexp(-cf) where a = -10.9, b = +10.0, and c - -1400.

between the measured data and the optimally smoothed data follow a centrally peaked, 
approximately symmetric distribution with a standard deviation of about 1.5 mK (Figure 
10). This distribution agrees with our expectation from initial examination of the data 
(Clow and others, 1995). Compared to the power spectrum from the synthetic data 
example discussed in the last section, the noise in the GISP2 data set has about the 
same power, but persists to lower frequencies. The climate signal in the 80 - 1500 m 
portion GISP2 borehole is dominated by lower frequencies than our near-surface (0 - 100 
m) synthetic example.

The smoothed data were deconvolved with an exponential discrete response function 
defined as follows: t0 = 0, r   15 s, Atf = 2 s, tc = 100 s. The function was generated 
by the FORTRAN code response.f (listed in Appendix B). The discrete response func­ 
tion was deconvolved with the smoothed data function by the serial division algorithm 
implemented in the FORTRAN code, simdecon.f (Appendix B).

The power spectrum of the deconvolved signal (Figure 11) shows that the deconvolu- 
tion noise is several orders of magnitude lower in power than the original measurement 
noise. Again, the optimal filter (Figure 12) is designed as a conservative estimate for



18 Saltus and Clow

100
Optimal smoothing filter - May 1992 GISP2 data smoothing

o.ooo 0.002 0.004 0.006 
Frequency (Hz)

0.008 0.010

Figure 9: The optimal filter function, $ used for smoothing of the GISP2 data log.
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Figure 10: Histogram of difference between raw and smoothed temperature data from the 
12 May 1992 GISP2 icecore hole.
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Deconvolved data power spectrum and second optimal filter definition

May 1992 GISP2 temperature log

noise 
signal 
signal + noise

0.000 0.005 0.010 0.015 
Frequency (Hz)

0.020 0.025

Figure 11: Power spectrum of the deconvolved GISP2 temperature log. The inferred 
white noise (numeric noise from discrete deconvolution) is modeled with a flat function at 
10~ 12 squared amplitude. The noise plus signal function is fit by an exponential function 
of the form d(f) = a + 6exp(-c/); a = -12.0, 6 = +4.0, and c = 250.

recovering a noise-free signal.
Examination of detailed subsections of the temperature data (Figure 13) shows the 

character of the measured data, smoothed data, and deconvolved signal. The difference 
between the smoothed data and the deconvolved signal (Figure 14) ranges from about -2 
to +2 mK over the full depth of the temperature log. The positions of critical points in 
the temperature log (positions of gradient reversal, for example) are only shifted by a few 
meters by deconvolution (e.g., Figure 13b).

5 CONCLUSION

We have discussed a treatment of the deconvolution of borehole temperature measure­ 
ments made at discrete time intervals by a finite-response probe system moving continu­ 
ously in a borehole. High fidelity reconstruction of the actual temperature field from the 
measured temperatures requires careful attention to noise analysis and deconvolution. It is 
also important to consider the resolution of the discrete probe response function, particu­ 
larly when dealing with high temperature gradients. Our synthetic example demonstrates
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Optimal smoothing filter - May 1992 GISP2 deconvolution smoothing 
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Figure 12: The optimal filter function, $ used for smoothing of the deconvolution of the 
GISP2 data log.
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Detailed comparison of raw, smoothed, and deconvolved data
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Figure 13: Detailed comparisons of measured data (noisy solid line), smoothed data 
(dashed line), and smoothed deconvolution (smooth solid line) for the GISP2 data set. 
13a - top Top of n-butyl acetate fluid in the hole. 13b - bottom Region of maximum 
curvature.
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Detailed comparison of raw, smoothed, and deconvolved data
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Figure 13: Detailed comparisons of measured data (noisy solid line), smoothed data 
(dashed line), and smoothed deconvolution (smooth solid line) for the GISP2 data set. 
13c - top Region of maximum slope. 13d - bottom Bottom of the hole.
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Figure 14: Difference between smoothed data and deconvolved data for the May 1992 
GISP2 temperature log.
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that actual temperatures can be recovered to better than 1 mK in the presence of noise of 
that magnitude. We applied a three-step method (optimal noise filtering of the measured 
data, discrete deconvolution with a measured probe response function, and optimal noise 
filtering of the deconvolution noise) to temperature data collected in May 1992 at the 
GISP2 borehole in Greenland. Examination of the power spectrum from the GISP2 data 
set indicates that the 1.5 mK random, slip-ring noise dominates to frequencies of 0.004 Hz 
and above. The deconvolved temperatures differ from the smoothed temperature mea­ 
surements by less than 2 mK. Positions of key features in the temperature log (such as 
points of maximum gradient), are shifted by several meters as a result of deconvolution.
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7 APPENDIX A: MEASUREMENT OF PROBE RESPONSE 
FUNCTION

The Fenwal K212E custom-made thermistor probe used in the USGS high-precision log­ 
ging system consists of 20 small NTC bead thermistors divided into two groups, each 
sealed in glass (Sass and others, 1971; Clow and others, 1995). The thermistor packets 
are wired in parallel and contained in a 4.0 mm diameter stainless steel needle. Chisholm 
and Chapman (1992) report a 7 s time constant for their Fenwal 212E temperature probe 
in still water. At cold temperatures and in other liquids we have measured significantly 
longer response times.

As discussed previously, equation (1) can be used to fit the response of a thermistor 
probe to a step change in temperature and equation (2) allows us to graphically determine 
the probe response from measurement of a step change in temperature. We have only 
conducted limited experimental tests of probe response so far.

For the Fenwal K212E probe in stirred (Figure Al) and unstirred alcohol (Figure A2), 
still water (Figure A3), and still Jet A Fuel (Figure A4) we measured response times 
ranging from 2.7 to 14.7 s (see Table 1). For these tests the probe started at ambient air 
temperature (about 29 °C) and was then submerged in a temperature bath at about 13 
°C (alcohol and Jet A) or 0 °C (water/ice bath). It is interesting to note that equation (1) 
is evidently not a good model for the later parts of the approach to equilibrium (the slope 
of the curve on the semi-log plot increases with time). Further tests of probe response are 
necessary to develop a better response function.

At the GISP2 icecore hole in Greenland we made an estimate of the probe response 
time by recording the probe's approach to an equilibrium temperature when first entering 
the liquid n-butyl acetate near the top of the hole (fluid first encountered at about 80 m 
depth). The probe was driven into the hole at 6 cm/s (12 ft/min) and stopped once the 
entire probe and weight assembly was immersed. Temperature measurements were made 
at 5 s intervals (Figure A5) as the probe and weight assembly reached thermal equilibrium. 
Based on the probe response from 18:05:45 to 18:06:40 (Figure A6), a response time of 15 s 
(Figure A6) can be derived. This is a preliminary determination for the probe response in 
the physical conditions encountered at the GISP2 borehole. Further measurements must 
be made in subsequent field seasons and in the laboratory to improve our understanding 
of the probe response.
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Probe System Response in Stirred Alcohol301 ' ' ' i ' ' ' I ' '-
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Figure Al: (top) Temperature verses time plot for Fenwal 212E thermister probe immer­ 
sion in stirred alcohol at 13 °C. (bottom) Time verses ln[(s(t) - T^)/AT] plot of Fenwal 
212E thermister probe response in stirred alcohol at 13 °C. Initial time constant = 2.7 s.
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Probe System Response in Still Alcohol
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Figure A2: (top) Temperature verses time plot for Fenwal 212E thermister probe im­ 
mersion in unstirred alcohol at 13 °C. (bottom) Time verses ln[(5(<)   T^/AT] plot of 
Fenwal 212E thermister probe response in unstirred alcohol at 13 °C. Time constant =
3.8s.
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Probe System Response In Unstirred Ice Bath

31

30 r

o

100

80

60

40

20

20 40
Time (s)

Time Constant in Unstirred Ice Bath

80

-2 -4 -6 
In{[s(t)-Tinf]/Delta T}

100

-8

Figure A3: (top) Temperature verses time plot for Fenwal 212E thermister probe im­ 
mersion in an ice bath at 0 °C. (bottom) Time verses ln[(s(t)   TOO)/AT] plot of Fenwal 
212E thermister probe response in an ice bath at 0 °C. Initial time constant = 7.2 s.
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Probe System Response in Unstirred Jet A
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Figure A4: (top) Temperature verses time plot for Fenwal 212E thermister probe im­ 
mersion in still Jet A fuel at 13 °C. (bottom) Time verses ln[(s(t) - T00 )/AT] plot of 
Fenwal 212E thermister probe response in still Jet A fuel at 13 °C. Initial time constant 
= 14.7 s.
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Thermistor Probe Entering n-Butyl Acetate, GISP2, May 1992
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Figure A5: Depth verses temperature plot for Fenwal 212E thermister probe immersion 
in n-butyl acetate at GISP2, May 1992.
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Probe System Response in N-Butyl Acetate, GISP2, May 1992
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Figure A6: (top) temperature verses time plot for Fenwal 212E thermister probe immer­ 
sion in n-butyl acetate at GISP2, May 1992. (bottom) Time verses ln[(s(t) - T^/AT] 
plot of Fenwal 212E thermister probe immersion in n-butyl acetate at GISP2, May 1992. 
Initial time constant = 15 s.
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8 APPENDIX B: COMPUTER CODES

The following computer codes, written in standard FORTRAN-77 and in IDL Version 3.1 
(Research Systems, Inc., 1993), were used for the filtering and deconvolution described in 
this report.

8.1 convol.f - discrete probe response function

c convol - input data and response function - do convolution sum 

program convol

character*80 inres,indat,outcon,buffer 
dimension x(50000),data(50000),res(10000) 
double precision dl,d2,convl

print *,'CONVOL - convolution by summing*

ival-iaquest('Input data',indat,'(a80)',0) 
ival=iaquest('Input response funct',inres,'(a80)',0) 
ival=iaquest('Output convolution',outcon,'(a80)',0)

open(10,file=indat,form-'formatted',status-'old') 
open(ll,file=inres,form-'formatted',status='old') 
open(12,file=outcon,form-'formatted',status='unknown')

read(10,*)n 
read(10,'(a80)')buffer 
print *,buffer 
idata-0 

10 continue
read(10,*,end=19)x(idata+l),data(idata+l) 
idata-idata+1 
goto 10 

c
19 continue 

read(ll,*)n 
read(ll,'(a80)')buffer 
print *,buffer 
ires-0

20 continue
read(ll,*,end-29)z,res(ires+l)
ires=ires+l
goto 20
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29 continue
print *,idata,' data points...'
print *,ires,' points in response function...'

write(12,*)idata
idlen=itlen(indat)
irlen=itlen(inres)
buffer^indatdridlen)//' convolved with V/inres(l:irlen)
iblen=itlen(buffer)
write(12,*)buffer(l:iblen)

do 80 i=l,idata 
n=min(i,ires) 
dl=0. 
do 70 j=l,n
dl=dl+dble(res(j))*dble(data(i-j+O) 

70 continue
if (n.It.ires) then 

do 75 j=n+l,ires
dl=dl+dble(res(j))*dble(data(l)) 

75 continue 
end if
write(12,*)x(i),sngl(dl) 

80 continue

close(lO) 
close(ll) 
close(12)

end

8.2 response.f- discrete probe response function

c
c response.f - make a discrete probe impulse response function for use
c with deconvolution tests
c
c saltus 6/10/93 (for climate program)
c

program response

dimension res(8192) 
character*80 outfile
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print *,'! will ask some questions and then make a response 1 , 
&' function 1
print *,'of the form h(t)=(l/tau)exp[-(l/tau)(t-to)]' 
print *,'where: to is the time delay 1 
print *,' and tau is the probe time constant 1

ival=irquest('Give to (sec)',to,'(f15.5)',0) 
ival=irquest('Give tau (sec)',tau,'(f15.5)',0) 
ival=irquest('Give time increment (sec)',tine,'(f15.5)',0) 
ival=irquest('Give time cutoff (sec)',tcut,'(f15.5)',0)

ival=iaquest('Give output file',outfile,'(a80)',0) 
openClO.filesoutfile.forms'formatted'.status-'unknown')

nstart=ifix(to/tine)+1
nfunc=ifix(tcut/tine)+1
nres ss l+(nstart+nfunc)*2
print *,nstart,' = first non-zero element of response array'
print *,nfunc,' - number of non-zero elements in array'
print *,nres,' = total length of response array'

do 10 i-l,nres
res(i)=0.0 

10 continue

sum=0.0 
rat=tinc/tau 
do 20 i=0,nfunc-l 

c res(nstart+i)=1./tau*exp((-1./tau)*(float(i)*tinc))
res(nstart+i) ssrat*exp(-rat*(float(i)))
sum=sum+res(nstart+i) 

20 continue
truesum^l-expC-tcut/tau)
print *,'actual function sum =',sum
print *,'true sum value -',truesum

c normalize to 1

sumtest=0.
do 30 i=0,nfunc-l

res (nstart-i-i)-res (nstart+i) /sum
sumtest=sumtest+res(nstart+i) 

30 continue
print *,'normalized function sum -',sumtest
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c write to file
write(10,*)nres 
write(10,100)to,tau,tine,tout

100 format('Response funct, to=',f5.2,' tau=',f5.2,' tinc=',f8.5, 
& » tcut=',f5.2) 
do 40 i=l,nres

write(10,*)float(i-l)*tinc,res(i) 
40 continue

close(lO) 
end

8.3 Example IDL program for optimal filtering

; Optimal smoothing of May 1992 GISP2 temperature log
»
; Richard W. Saltus - for climate project
»
; a = temperature data
; b = flipped temperature array for FFT purposes
; ab = a concatenated with b
; c = calculated power spectrum of ab
»
; construct a continuous, repeating function for FFT analysis
»
a = ydat
ashift « a(0)
aprime = a - ashift
ntemp = indgen(ndl)
aslope = aprime(ndl-1)/ntemp(ndl-1)
atilt = aprime - aslope*ntemp
»
b - reverse(atilt); flip a and put in b
bprime = -l*b
abprime = [atilt,bprime(1 :ndl-2)] ; concatenate a and b into ab
n = ndl * 2; create array (f) of frequencies
t = 2.
n21 = n/2 + 1
f « indgen(n)
f(n21) = n21 - n + findgen(n21-2)
f « f/(n*t)
c = (abs(FFT(abprime,-l))"2); calculate power spectrum of c
clog = aloglO(c)
>
; calculate signal and noise functions
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explogfitl = -10.9+10.*exp(-f(0:n21-l)*1400.)
expfitl = 10.*(explogfitl)
expfit = expfitl
exprev = reverse(expfit)
cfit = [expfit(0:n21-2),exprev]
nfit = fltarr(n)
nfit = replicate(cfit(n21),n)
sfit = cfit - nfit
phi = sfit/cfit
plot.io,shift(f,-n21),shift(c,-n21),xrange=[0.,.01]
oplot,shift(f,-n21),shift(cfit,-n21)
oplot,shift(f,-n21),shift(sfit,-n21)
oplot,shift(f,-n21),shift(nfit,-n21)
; OK, have manufactured phi - now use it to filter out noise,
abfft = FFT(abprime,-l)
absmooth = fltarr(n)
absmooth = FFT(abfft*phi,l)
absfix = (absmooth(0:ndl-l)+ntemp*aslope)+ashift
>
aout = fltarr(ndl,2)
aout(*,0) = xdat
aout(*,l) = absfix(Orndl-l)
aout=transpose(aout)
openw, 1,'gispDS.sxy'
printf,l,ndl
printf,!,'Optimal smoothing of GISP 2-sec data'
printf,1,aout
close,!
end

8.4 simdecon.f - exact discrete deconvolution

c
c simdecon - input convolution and response function - invert for decon
c
c R.W. Saltus - U.S. Geological Survey
c
c This program uses "serial division" (see Bracewell, 1986,
c The Fourier Transform and Its Applications, McGraw.Hill,
c chapter 3) to deconvolve a measured function (data) and an
c assumed response function (res) to obtain a signal function (s).
c
c This form of deconvolution depends on the measurement apparatus
c starting at an equilibrium value (i.e., measurement(1) = signal(l).
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program simdecon

character*80 inres,indat,outcon,buffer
dimension x(20000),data(20000),res(10000),s(20000)
double precision dl,d2,convl

print *,'SIMDECON - simple deconvolution by division'

ival=iaquest('Input data*,indat,'(a80)',0) 
ival=iaquest('Input response funct',inres,'(a80)',0) 
ival=iaquest('Output deconvolution',outcon,'(a80)',0)

open(10,file=indat,form='formatted',status='old') 
open(11,f ile=inres,form='formatted',status='old') 
open(12,file=outcon,form='formatted',status='unknown')

c read the measured function into the data array 
c number of measurements = idata

read(10,*)n 
read(10,'(a80)')buffer 
print *,buffer 
idata=0 

10 continue
read(10,*,end=15)x(idata+l),data(idata+l)
idata=idata+l
goto 10

c read the response function into res, number of points = ires

15 continue
read(ll,*)n
readCll,'(a80)')buffer
print *,buffer
ires=0 

20 continue
read(ll,*,end=30)z,res(ires+l)
ires=ires+l
goto 20

30 continue 

c open output file and write a header
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print *,idata,' data points...'
print *,ires,' points in response function...'

write(12,*)idata
idlen=itlen(indat)
irlen=itlen(inres)
buffer=indat(l:idlen)// > deconvolved with '//inres(l:irlen)
iblen=itlen(buffer)
write(12,*)buffer(l:iblen)

c signal(1) = data(l) [Function assumed to be in equilibrium to start]

s(l)=data(l) 
write(12,*)x(l),s(l)

c loop for each data point, use serial division to perform deconvolution

do 80 i=2,idata 

c nf = number of previous deconvolved data points available

nf=min(i-l,ires-l)
dl=0.
do 70 j=l,nf

dl=dH-dble(res(j+l))*dble(s(i-j)) 
70 continue

c if nf is less than the size of the response function, use the
c initial data value to extend the length of the measurement function
c into times before the beginning of the experiment
c (again, because of the initial equilibrium assumption).

if (nf.It.ires-1) then 
do 75 j=nf+l,ires-l

dl=dH-dble(res(j+l))*dble(s(i-nf)) 
75 continue 

end if

c produce the current deconvolved point and write to the output file

s(i)=(data(i)-sngl(dl))/res(l) 
write(12,*)x(i),s(i) 

80 continue

close(lO)
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close(ll) 
close(12)

end


